Endothelial Dimethylarginine Dimethylaminohydrolase 1 Is an Important Regulator of Angiogenesis but Does Not Regulate Vascular Reactivity or Hemodynamic Homeostasis.

نویسندگان

  • Laura Dowsett
  • Sophie Piper
  • Anna Slaviero
  • Neil Dufton
  • Zhen Wang
  • Olga Boruc
  • Matthew Delahaye
  • Lucy Colman
  • Eliza Kalk
  • James Tomlinson
  • Graeme Birdsey
  • Anna M Randi
  • James Leiper
چکیده

BACKGROUND Asymmetrical dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthesis and a risk factor for cardiovascular disease. Dimethylarginine dimethylaminohydrolase (DDAH) enzymes are responsible for ADMA breakdown. It has been reported that endothelial DDAH1 accounts for the majority of ADMA metabolism. However, we and others have shown strong DDAH1 expression in a range of nonendothelial cell types, suggesting that the endothelium is not the only site of metabolism. We have developed a new endothelium-specific DDAH1 knockout mouse (DDAH1(En-/-)) to investigate the significance of endothelial ADMA in cardiovascular homeostasis. METHODS AND RESULTS DDAH1 deletion in the DDAH1(En-/-) mouse was mediated by Tie-2 driven Cre expression. DDAH1 deletion was confirmed through immunocytochemistry, whereas Western blotting showed that DDAH1 remained in the kidney and liver, confirming expression in nonendothelial cells. Plasma ADMA was unchanged in DDAH1(En-/-) mice, and cultured aortas released amounts of ADMA to similar to controls. Consistent with these observations, vasoreactivity ex vivo and hemodynamics in vivo were unaltered in DDAH1(En-/-) mice. In contrast, we observed significantly impaired angiogenic responses both ex vivo and in vivo. CONCLUSIONS We demonstrate that endothelial DDAH1 is not a critical determinant of plasma ADMA, vascular reactivity, or hemodynamic homeostasis. DDAH1 is widely expressed in a range of vascular and nonvascular cell types; therefore, the additive effect of DDAH1 expression in multiple organ systems determines plasma ADMA concentrations. Endothelial deletion of DDAH1 profoundly impairs the angiogenic capacity of endothelial cells, indicating that intracellular ADMA is a critical determinant of endothelial cell response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimethylarginine dimethylaminohydrolase regulates nitric oxide synthesis: genetic and physiological evidence.

BACKGROUND NO is a major regulator of cardiovascular physiology that reduces vascular and cardiac contractility. Accumulating evidence indicates that endogenous inhibitors may regulate NOS. The NOS inhibitors asymmetric dimethylarginine (ADMA) and N-monomethylarginine are metabolized by the enzyme dimethylarginine dimethylaminohydrolase (DDAH). This study was designed to determine if increased ...

متن کامل

The ADMA/DDAH pathway is a critical regulator of endothelial cell motility.

Asymmetric dimethylarginine (ADMA) is an inhibitor of nitric oxide production associated with abnormal blood vessel growth and repair, however, the mechanism of action of ADMA is not well understood. We studied the role of exogenous and endogenous ADMA in the regulation of cell motility and actin cytoskeleton in porcine pulmonary endothelial cells (PAECs) and pulmonary microvascular endothelial...

متن کامل

A novel and potent inhibitor of dimethylarginine dimethylaminohydrolase: a modulator of cardiovascular nitric oxide.

PD 404182 [6H-6-imino-(2,3,4,5-tetrahydropyrimido)[1,2-c]-[1,3]benzothiazine], a heterocyclic iminobenzothiazine derivative, is a member of the Library of Pharmacologically Active Compounds (LOPAC) that is reported to possess antimicrobial and anti-inflammatory properties. In this study, we used biochemical assays to screen LOPAC against human dimethylarginine dimethylaminohydrolase isoform 1 (...

متن کامل

Exploring the role of dimethylarginine dimethylaminohydrolase-mediated reduction in tissue asymmetrical dimethylarginine levels in cardio-protective mechanism of ischaemic postconditioning in rats

Objective(s): Reperfusion of ischaemic myocardium results in reduced nitric oxide (NO) biosynthesis by endothelial nitric oxide synthase (eNOS) leading to endothelial dysfunction and subsequent tissue damage. Impaired NO biosynthesis may be partly due to increased levels of asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of eNOS. As dimethylarginine dimet...

متن کامل

Dimethylarginine dimethylaminohydrolase promotes endothelial repair after vascular injury.

OBJECTIVES We sought to determine if a reduction in asymmetric dimethylarginine (ADMA) enhances endothelial regeneration. BACKGROUND Asymmetric dimethylarginine is an endogenous inhibitor of nitric oxide synthase (NOS). Increased plasma levels of ADMA are associated with endothelial vasodilator dysfunction in patients with vascular disease or risk factors. Asymmetric dimethylarginine is elimi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 131 25  شماره 

صفحات  -

تاریخ انتشار 2015